Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Peter C. Healy

School of Science, Griffith University, Nathan, Brisbane 4111, Australia

Correspondence e-mail: p.healy@griffith.edu.au

Key indicators

Single-crystal X-ray study T = 295 KMean $\sigma(\text{C-C}) = 0.020 \text{ Å}$ R factor = 0.034 wR factor = 0.096Data-to-parameter ratio = 16.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

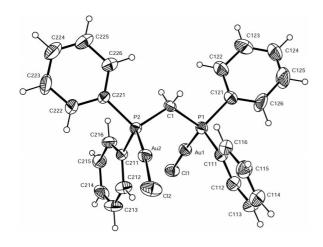
A new polymorph of μ -bis(diphenylphosphino)methane- $\kappa^2 P$:P'-bis[chlorogold(I)]

The title compound, $[(AuCl)_2(dppm)]$ (dppm = $Ph_2P(CH_2)$ - PPh_2), has been found to crystallize as a new triclinic polymorph. Unlike the previously reported monoclinic form, there are no aurophilic $Au\cdots Au$ interactions between the Au(I) atoms.

Received 13 October 2003 Accepted 3 November 2003 Online 8 November 2003

Comment

The structure of the title compound, (I), was first determined by Schmidbaur *et al.* (1977) [monoclinic, space group C2/c, a = 22.31 (1) Å, b = 7.215 (7) Å, c = 18.12 (1) Å and $\beta = 120.43$ (8)°]. This structure, (Ia), consists of discrete molecules of [(AuCl)₂(dppm)] disposed about the crystallographic twofold axis with a conformational structure in which the Au-P···P—Au torsion angle is 67 (1)°, yielding an intramolecular Au···Au distance of 3.351 (2) Å. This distance has subsequently been classified as an intramolecular Au^I···Au^I aurophilic interaction, facilitated by the small bite of the dppm ligand (*e.g.* Van Calcar *et al.*, 1997).


The complex also crystallizes in the triclinic space group $P\overline{1}$, as discrete molecules with one complete molecule constituting the asymmetric unit [structure (Ib); Figs. 1 and 2]. The most significant difference between the structures of the two polymorphs is that, in (Ib), there are no $Au^I \cdots Au^I$ aurophilic interactions. In (Ib), the $Au-P\cdots P-Au$ torsion angle is 124.3 (1)°, yielding an $Au1\cdots Au2$ distance of 5.617 (3) Å, while all intermolecular $Au\cdots Au$ distances are greater than 4 Å. The Au atoms are located above the plane of a phenyl ring on the opposite P atom, suggesting that $Au\cdots \pi$ interactions may be an important factor in the determination of the conformational structure of this polymorph.

There are no unusual features of the gold coordination geometry of (Ib), with Au-P=2.233 (3) and 2.228 (2) Å, Au-Cl=2.276 (3) and 2.278 (3) Å, and P-Au-Cl=177.4 (1) and 175.5 (1)° [cf. (Ia), Au-P=2.238 (1) Å, Au-Cl=2.288 (1) Å and P-Au-Cl=175.2 (2)°]. The absence of aurophilic interactions in (Ib), however, is consistent with the observed increase in the P-C-P ligand bite angle from 116 (1)° in (Ia) to 119.7 (5)° in (Ib).

DOI: 10.1107/S1600536803025364

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Extinction correction: *SHELXL*97 Extinction coefficient: 0.00070 (19)

Figure 1 View of (*Ib*), with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

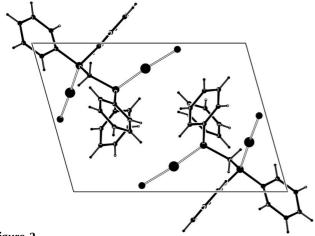


Figure 2 Crystal packing diagram for (Ib), viewed down the a axis, with b horizontal and c vertical.

Experimental

(NBu₄)[AuCl₄] (29 mg, 0.049 mmol) and bis(diphenylphosphino)-methane (19 mg, 0.049 mmol) were suspended in a solution of concentrated HCl (0.2 ml) in dimethylformamide (5 ml). The mixture was gently warmed to give a clear pale-yellow solution, which quickly faded to give a colorless solution. Cooling this solution to room temperature followed by slow evaporation of the solvent over a period of several days yielded well formed colorless needle-like crystals of (Ib); m.p. 538–541 K. Analysis found: C 35.80, H 2.65%; calculated for $C_{25}H_{22}Au_2Cl_2P_2$: C 35.36, H 2.61%.

Crystal data

-
Z = 2
$D_x = 2.190 \text{ Mg m}^{-3}$
Mo K α radiation
Cell parameters from 25
reflections
$\theta = 12.6 - 16.1^{\circ}$
$\mu = 11.72 \text{ mm}^{-1}$
T = 295 K
Needle, colorless
$0.40 \times 0.25 \times 0.20 \text{ mm}$

Data collection

Rigaku AFC-7R diffractometer	$R_{\rm int} = 0.017$
ω –2 θ scans	$\theta_{\rm max} = 25.0^{\circ}$
Absorption correction: ψ scan	$h = -12 \rightarrow 12$
(North et al., 1968)	$k = -15 \rightarrow 15$
$T_{\min} = 0.041, T_{\max} = 0.096$	$l = -5 \rightarrow 11$
5139 measured reflections	3 standard reflections
4519 independent reflections	every 150 reflections
3666 reflections with $I > 2\sigma(I)$	intensity decay: 1.2%
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0408P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.034$	+ 7.2469P]
$wR(F^2) = 0.096$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\text{max}} = 0.001$
4519 reflections	$\Delta \rho_{\text{max}} = 1.31 \text{ e Å}^{-3}$
281 parameters	$\Delta \rho_{\min} = -1.33 \text{ e Å}^{-3}$
TT .	The state of the s

Table 1 Selected geometric parameters (Å, °).

H-atom parameters constrained

Au1-Cl1	2.276 (3)	P1-C111	1.803 (11)
Au1-P1	2.233 (3)	P1-C121	1.812 (10)
Au2-Cl2	2.278 (3)	P2-C1	1.821 (9)
Au2-P2	2.228 (2)	P2-C211	1.813 (9)
P1-C1	1.820 (9)	P2-C221	1.808 (9)
Cl1-Au1-P1	177.44 (11)	C1-P2-C221	103.4 (4)
Cl2-Au2-P2	175.48 (10)	C211-P2-C221	104.5 (4)
Au1-P1-C1	112.9 (3)	P1-C1-P2	119.7 (5)
Au1-P1-C111	114.7 (3)	P1-C111-C112	119.6 (8)
Au1-P1-C121	113.4 (3)	P1-C111-C116	121.6 (8)
C1-P1-C111	108.1 (5)	P1-C121-C126	123.3 (14)
C1-P1-C121	102.5 (5)	P1-C121-C122	119.6 (9)
C111-P1-C121	104.1 (5)	P2-C211-C212	119.8 (7)
Au2-P2-C1	115.7 (3)	P2-C211-C216	120.6 (8)
Au2-P2-C211	112.5 (3)	P2-C221-C222	119.1 (9)
Au2-P2-C221	112.6 (3)	P2-C221-C226	124.0 (8)
C1-P2-C211	107.1 (4)		. ,

H atoms were constrained in the riding model approximation, fixed to their parent C atoms at a C—H distance of 0.95 Å, and $U_{\rm iso}({\rm H})$ values were set to $1.2 U_{\rm eq}$ of the parent atom. The maximum and minimum residual electron densities were located within 1 Å of atoms Au1 and Au2. The magnitude and anisotropy of the displacement ellipsoids of phenyl rings 12n and 22n (n=1–6) are consistent with a measure of disorder in these rings.

Data collection: MSC/AFC-7 Diffractometer Control Software for Windows (Molecular Structure Corporation, 1999); cell refinement: MSC/AFC-7 Diffractometer Control Software for Windows; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997–2001); program(s) used to solve structure: TEXSAN for Windows; program(s) used to refine structure: TEXSAN for Windows and SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: TEXSAN for Windows and PLATON (Spek, 1980–2001).

The author thanks Griffith University for financial assistance.

References

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Molecular Structure Corporation (1999). MSC/AFC-7 Diffractometer Control Software for Windows. Version 1.02. MSC, 9009 New Trails Drive, The Woodlands. TX 77381. USA.

metal-organic papers

Molecular Structure Corporation (1997–2001). *TEXSAN for Windows*. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). *Acta Cryst.* A**24**, 351–359

Schmidbaur, H., Wohlleben, A., Wagner, F., Orama, O. & Huttner, G. (1977).
Chem. Ber. 110, 1748–1754.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (1980–2001). PLATON for Windows. Version 121201. University of Utrecht, The Netherlands.

Van Calcar, P. M., Olmstead, M. M. & Balch, A. L. (1997). Inorg. Chem. 36, 5231–5238.